Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 46

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Criticality safety evaluation of high active liquid waste during the evaporation to dryness process at Tokai Reprocessing Plant

Miura, Takatomo; Kudo, Atsunari; Koyama, Daisuke; Obu, Tomoyuki; Samoto, Hirotaka

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10

Tokai Reprocessing Plant (TRP) had reprocessed 1,140 tons of spent fuel discharged from commercial reactors (BWR, PWR) and Advanced Thermal Reactor "Fugen" from 1977 to 2007. TRP had entered decommissioning stage in 2018. In order to reduce the risk of High Active Liquid Waste (HALW) held at the facility, the vitrification of HALW is given top priority. HALW generated from reprocessing of spent fuel contains not only fission products (FPs) but also trace amounts of uranium (U) and plutonium (Pu) within the liquid and insoluble residues (sludge). Under normal conditions, concentrations of U and Pu in HALW are very low so that it can not reach criticality. Since FPs with high neutron absorption effect coexists in HALW, even if the cooling function is lost due to serious accident and HALW evaporates to dryness, it is considered that criticality would not been reached. In order to confirm this estimation quantitatively, criticality safety evaluations were carried out for the increase of U and Pu concentrations by evaporation of HALW to the point of dryness. In this evaluation, infinite multiplication factors were calculated for each of solution system and sludge system of HALW with respect to the concentration change through evaporation to dryness. It is confirmed it could not reach criticality. The abundance ratios of U, Pu and FPs were set conservatively based on analytical data and ORIGEN calculation results. Multiplation factors for two-layer infinite slab model of solution and sludge systems of HALW were also calculated, and it was confirmed it could not reached criticality. In conclusion, the result was gaind that there could be no criticality even in the process through evaporation to dryness of HALW in TRP.

JAEA Reports

Development of analytical approach of source term for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2023-001, 26 Pages, 2023/05

JAEA-Research-2023-001.pdf:1.61MB

An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an analytical approach has been developed using computer simulation programs to assess the radioactive source term from those facilities. The proposed approach consists analyses with three computer programs. At first, the simulation of boiling behavior in the HLLW tank is conducted with SHAWED code. Next step, the thermal-hydraulic behavior in the facility building is simulated with MELCOR code based on the results at the first step simulation such as flowed out mixed steam flow rate, temperature and volatilized Ru from the tank. The final analysis step is carried out for estimating amount of released radioactive materials with SCHERN computer code which simulates chemical behaviors of nitric acid, nitrogen oxide and Ru based on the condition also simulated MELCOR. Series of sample simulations of the accident at a hypothetical typical facility are presented with the data transfer between those codes in this report.

JAEA Reports

Development of simulation program; SHAWED for analysis of accident of evaporation to dryness by boiling of reprocessed high level liquid waste in tank

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2022-011, 37 Pages, 2022/12

JAEA-Research-2022-011.pdf:2.88MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. Two major mechanisms are expected for fission products (FPs) transfer from liquid to vapor phase. One is non-volatiles FPs transfer in the form of mists to the vapor phase in the tank, the other is volatilization of such as Ruthenium. These FPs transferred to the vapor phase in the tank could be released with water and nitric-acid mixed steam and NO$$_{2}$$ gas flow to the environment. NO$$_{2}$$ is generated from denitration of nitrate fission products during dry out phase. These phenomena occurred in this accident originate from the liquid waste boiling in the tank. It is essential for the risk assessment of this accident to simulate thermo-hydraulic and chemical behaviors in the waste tank quantitatively with a versatile computer program. The SHAWED ($$underline{rm S}$$imulation of $$underline{rm H}$$igh-level radio$$underline{rm A}$$ctive $$underline{rm W}$$aste $$underline{rm E}$$vaporation and $$underline{rm D}$$ryness) has been developed to realize these requirements. In this report, detailed description of major analytical models is explained based on the features of this accident, and some simulation examples are also described for the use in an actual risk assessment.

Journal Articles

Overview of event progression of evaporation to dryness caused by boiling of high-level liquid waste in Reprocessing Facilities

Yamaguchi, Akinori*; Yokotsuka, Muneyuki*; Furuta, Masayo*; Kubota, Kazuo*; Fujine, Sachio*; Mori, Kenji*; Yoshida, Naoki; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 21(4), p.173 - 182, 2022/09

Risk information obtained from probabilistic risk assessment (PRA) can be used to evaluate the effectiveness of measures against severe accidents in nuclear facilities. The PRA methods used for reprocessing facilities are considered immature compared to those for nuclear power plants, and to make the methods mature, reducing the uncertainty of accident scenarios becomes crucial. In this paper, we summarized the results of literature survey on the event progression of evaporation to dryness caused by boiling of high-level liquid waste (HLLW) which is a severe accident in reprocessing facilities and migration behavior of associated radioactive materials. Since one of the important characteristics of Ru is its tendency to form volatile compounds over the course of the event progression, the migration behavior of Ru is categorized into four stages based on temperature. Although no Ru has been released in the waste in the high temperature region, other volatile elements such as Cs could be released. Sufficient experimental data, however, have not been obtained yet. It is, therefore, necessary to further clarify the migration behavior of radioactive materials that predominantly depends on temperature in this region.

JAEA Reports

Analysis of risk reduction effect of supposed steam condenser implementation as accident measure for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-013, 20 Pages, 2022/01

JAEA-Research-2021-013.pdf:2.35MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.

JAEA Reports

Analysis of behavior of Ru with nitrogen oxide chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-005, 25 Pages, 2021/08

JAEA-Research-2021-005.pdf:2.91MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.

JAEA Reports

SCHERN-V2: Technical guide of computer program for chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Data/Code 2021-008, 35 Pages, 2021/08

JAEA-Data-Code-2021-008.pdf:3.68MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NO$$_{rm x}$$) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects to the migration behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NO$$_{rm x}$$ with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. The analysis program, SCHERN has been under developed to simulate chemical behavior including Ru coupled with the thermo-hydraulic condition in the flow paths in the facility building. This technical guide for SCHERN-V2 presents the overview of covered accident, analytical models including newly developed models, differential equations for numerical solution, and user instructions.

JAEA Reports

Preparation of carbonate slurry simulating chemical composition of slurry in overflowed high integrity container and evaluation of its characteristics

Horita, Takuma; Yamagishi, Isao; Nagaishi, Ryuji; Kashiwaya, Ryunosuke*

JAEA-Technology 2021-012, 34 Pages, 2021/07

JAEA-Technology-2021-012.pdf:2.1MB
JAEA-Technology-2021-012(errata).pdf:0.18MB

Waste mainly consisting of carbonate precipitates (carbonate slurry) from the Advanced Liquid Processing System (ALPS) and the improved ALPS at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Holdings, Inc. have been storing in the High Integrity Container (HIC). The supernatant solution of carbonate slurry contained in some of HICs were overflowed in April of 2015. The all of level of liquid in the HICs were investigated; however, almost of the HICs were under the level of overflow. The mechanism of overflow suggested to be depending on the difference of the properties of the carbonate slurry such as the retention/release characteristics of the bubbles. Therefore, in order to clarify the mechanism of leakage, the repeatability experiment was carried out by using simulated carbonate slurry. The simulated carbonate slurry was perpetrated by using the same cross-flow filter system of the actual ALPS. Moreover, the preparative conditions for the simulated carbonate slurry were the same as Mg/Ca concentration ratio in inlet water of the ALPS (raw water) and the ALPS operating conditions. The chemical characteristics of simulated carbonate slurries were revealed by ICP-AES, pH meter, etc. The density of the settled slurry layer tended to increase depending on the calcium concentration in the raw water. The bubble injection test was conducted in order to investigate the bubble retention/release behavior in the simulated carbonate slurry layer. The simulated carbonate slurry with high settling density, which was generated by high calcium concentration solution was revealed to retain the injected bubbles. Since the ratio of concentration calcium and magnesium during the carbonate slurry generation is assumed to affect the retention of bubbles in the slurry layer, the information on the composition of raw water is one of important factor for overflow of HICs.

Journal Articles

Restraint effect of coexisting nitrite ion in simulated high level liquid waste on releasing volatile ruthenium under boiling condition

Yoshida, Ryoichiro; Amano, Yuki; Yoshida, Naoki; Abe, Hitoshi

Journal of Nuclear Science and Technology, 58(2), p.145 - 150, 2021/02

 Times Cited Count:2 Percentile:11.8(Nuclear Science & Technology)

In the "evaporation and dryness due to the loss of cooling functions" which is one of the severe accidents at reprocessing plants in Japan, ruthenium (Ru) is possible to be released much more than other elements to the environment. This cause is considered that the volatile Ru compound can be released from high level liquid waste (HLLW) as gaseous compound in adding to the release by entrainment. It was expected that the release of the volatile Ru compound from the HLLW may be able to be restrained by coexisting nitrite ion because of its reduction power. To confirm the effect of nitrite ion on the release behavior of the volatile Ru compound, four experiments of heating the simulated HLLW (SHLLW) with setting the concentration of nitrite ion in the SHLLW as a parameter ware carried out. As a result, the release of the volatile Ru compound was seemed to be restrained by adding nitrite sodium as a source of nitrite ion under certain boiling condition. This result may contribute to improve source term analysis in the evaporation and dryness due to the loss of cooling functions.

Journal Articles

Frontline of R&D for decommissioning and waste disposal, 1; R&D for processing and disposal of low-level radioactive waste and closure of uranium mine

Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(11), p.658 - 663, 2020/11

no abstracts in English

JAEA Reports

SCHERN: Analysis program for chemical behavior of nitrogen oxide in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Hiyama, Mina*; Tamaki, Hitoshi; Yoshida, Kazuo

JAEA-Data/Code 2019-006, 17 Pages, 2019/07

JAEA-Data-Code-2019-006.pdf:1.84MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NOx) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects strongly to the transport behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NOx with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis program has been developed to simulate chemical reaction coupled with the thermo-hydraulic condition in the flow paths in the facility building.

Journal Articles

Treatment technology of highly radioactive solid waste generated by experimental tests and sample analysis in reprocessing facilities

Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko; Mori, Eito*

Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.221 - 224, 2019/07

Test equipment, containers, and analytical wastes, generated by experiments using spent fuel pieces in hot cell of Operation Testing Laboratory and by analysis of highly active liquid wastes in hot analytical cell line of Tokai Reprocessing Plant, are treated as highly radioactive solid wastes. These wastes are stored in specific shielded containers called waste cask and then transport to the storage facility. The treatment of these highly radioactive solid wastes have been carried out for 40 years with upgrading waste taking out system and transportation device. As a results, automation of several procedures have been achieved utilizing conventional equipment, and work efficiency and safety have been improved.

Journal Articles

Analysis of chemical behavior of nitrogen oxide formed by thermal decomposition of FP nitrates in accident of evaporation to dryness by boiling of reprocessed high-level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(2), p.69 - 80, 2019/06

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that nitrogen oxide affects strongly to the transport behavior of Ru. Chemical reactions of nitrogen oxide with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis method has been developed with coupling two types of computer codes to simulate not only thermo-hydraulic behavior but also chemical reactions in the flow paths of carrier gases. A simulation study has been also carried out with a typical facility building.

Journal Articles

Waste management in a Hot Laboratory of Japan Atomic Energy Agency, 1; Overview and activities in chemical processing facility

Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro

International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00

JAEA Reports

Development of correlation of gaseous ruthenium transfer rate to condensed water in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Amano, Yuki; Abe, Hitoshi

JAEA-Research 2017-015, 18 Pages, 2018/01

JAEA-Research-2017-015.pdf:3.08MB

An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents at a fuel reprocessing facility. It was observed at the experiments that a large amount of ruthenium (Ru) is volatilized and transfer to the vapor phase in the tank. The nitric acid and water mixed vapor released from the tank is condensed. Volatilized Ru is expected to transfer into the condensed water at the compartments in the building. Quantitative estimation of the amount of Ru transferred condensed water is key issues to evaluate the reduction the amount of Ru through leak path in the facility building. This report presents that a correlation has been developed for Ru transfer rate to condensed water with vapor condensing rate based on the experimental results and additional thermal-hydraulic simulation of the experiments. Applicability of the correlation has been also demonstrated with the accident simulation of typical facilities in full-scale.

JAEA Reports

Development of analytical model for condensation of vapor mixture of nitric acid and water affected volatilized ruthenium behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities

Yoshida, Kazuo

JAEA-Research 2016-012, 24 Pages, 2016/08

JAEA-Research-2016-012.pdf:3.04MB

An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents. In this case, Ru volatilization increases in liquid waste temperature over 120 centigrade at later boiling and dry out phases. It has been observed at the experiments with actual and synthetic liquid waste that some amount of Ru volatilizes and transfers into condensed nitric acid solution at those phases. The nitric acid and water vapor from waste tank condenses at compartments of actual facilities building. The volatilized Ru could transfer into condensed liquid. It is key issues for quantifying the amount of transferred Ru through the facility building to simulate these thermodynamic and chemical behaviors. An analytical model has been proposed in this report based on the condensation mechanisms of nitric acid and water in vapor-liquid equilibria. It has been also carried out to review the thermodynamic properties of nitric acid solution.

JAEA Reports

Accident analysis of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities with considering severe accident measures

Yoshida, Kazuo

JAEA-Research 2016-004, 15 Pages, 2016/06

JAEA-Research-2016-004.pdf:2.22MB

An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, some amount of fission products (FPs) will be transferred to the vapor phase in the tank, and could be released to the environment. Two mitigative accident measures have been proposed by the licensee. One of them is injecting cold water to waste tanks to prevent dryness and another is leading generated vapor through temporary duct to huge spaces in the facility to condense to liquid. Thermal-hydraulics and aerosol transport behaviors in compartments of a typical facility building have been analyzed based on the scenario with these accident measures. The effects of measures are discussed form a view point of the reduction of radioactive material release to environment.

Journal Articles

Release of radioactive materials from high active liquid waste in small-scale hot test for boiling accident in reprocessing plant

Yamane, Yuichi; Amano, Yuki; Tashiro, Shinsuke; Abe, Hitoshi; Uchiyama, Gunzo; Yoshida, Kazuo; Ishikawa, Jun

Journal of Nuclear Science and Technology, 53(6), p.783 - 789, 2016/06

 Times Cited Count:6 Percentile:43.12(Nuclear Science & Technology)

The release behavior of radioactive materials from high active liquid waste (HALW) has been experimentally investigated under boiling accident conditions. In the experiments using HALW obtained through laboratory scale reprocessing, release ratio was measured for the FP nuclides such as Ru, $$^{99}$$Tc, Cs, Sr, Nd, Y, Mo, Rh and actinides such as $$^{242}$$Cm, $$^{241}$$Am. As a result, the release ratio was 0.20 for Ru and 1$$times$$$$10^{-4}$$ for the FP and Ac nuclides. Ru was released into the gas phase in the form of both mist and gas. For its released amount, weak dependency was found to the initial concentration in the test solution. The release ratio decreased with the initial concentration. For other FP nuclides and actinides as non-volatile, released into the gas phase in the form of mist, the released amount increased with the initial concentration. The release ratio of Ru and NOx concentration increased with temperature of the test solutions. They were released almost at the same temperature between 200 and 300$$^{circ}$$C. Size distribution of the mist and other particle was measured.

Journal Articles

Analysis of release and transport of aerial radioactive materials in accident of evaporation to dryness caused by boiling of reprocessed high-level liquid waste

Yoshida, Kazuo; Ishikawa, Jun; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi, 14(4), p.213 - 226, 2015/12

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents to occur caused by the loss of cooling function at a fuel reprocessing plant. In this case, some amount of fission products (FPs) will be transferred to the vapor phase in the tank, and could be released to the environment. Therefore, the quantitative estimation of transport and release behavior of FPs is one of the key issues in the assessment of the accident consequence. To resolve this issue, a systematic analysis method with computer codes has been developed based on the phenomenological behavior in boiling accident of HLLW. A simulation study demonstrated that the behaviors of liquid waste temperature and entrainment of mists were in good agreement with the experimental results during early boiling phase

Journal Articles

Experimental study on boiling accident of high active liquid waste in reprocessing

Uchiyama, Gunzo; Tashiro, Shinsuke; Amano, Yuki; Abe, Hitoshi; Yamane, Yuichi; Yoshida, Kazuo; Ishikawa, Jun

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.1056 - 1063, 2015/09

The experimental study for source term data of radioactive materials has been conducted at a boiling accident of high active liquid waste (HALW) in reprocessing plants. In the study, three kinds of tests have been conducted including a cold small scale test, a cold engineering scale test and a hot small scale test. The following results were obtained: Ruthenium and Technetium were released into the gas phase in the form of both mist and gas under the boiling accident conditions of a simulated HALW. Non-volatile fission products (FPs) such as Nd and Cs were released into the gas phase in the form of mist. The release ratios of non-volatile FPs from a vessel of the simulated HALW were about 10$$^{-4}$$. The release ratios of actinide nuclides such as Am were almost the same as those of non-volatile FPs.

46 (Records 1-20 displayed on this page)